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Abstract: NMR spectroscopy is an inherently insensitive technique, and many challenging applications
such as biomolecular studies operate at the very limits of sensitivity and resolution. Advances in
superconducting magnet, cryogenic probe, and pulse sequence technologies have resulted in dramatic
improvements in both sensitivity and resolution in the past decade. Conversely, the signal-processing method
used most widely in NMR spectroscopy, extrapolation of the time domain signal by linear prediction (LP)
followed by discrete Fourier transformation (DFT), was developed in the early 1980s and has not been
subjected to detailed scrutiny for its impact on sensitivity and resolution. Here we report the first systematic
investigation of the accuracy and precision of spectra obtained by LP extrapolation followed by DFT. We
compare the results to spectra obtained by maximum-entropy (MaxEnt) reconstruction, which was developed
contemporaneously to LP extrapolation but is not widely employed in NMR spectroscopy. Although it reduces
truncation artifacts and increases the amplitudes of strong peaks, we find that LP extrapolation generates
false-positive peaks and introduces frequency errors. These defects of LP extrapolation become less
pronounced for longer data records and higher signal-to-noise ratio. MaxEnt generally yields more detectable
peaks for a given number of data samples, more accurate peak frequencies, and fewer false-positive peaks
than LP extrapolation. MaxEnt also permits the use of nonlinear sampling, which can give dramatic
improvements in resolution. These results show that the use of MaxEnt together with nonlinear sampling,
rather than LP extrapolation, could reduce the amount of instrument time required for adequate sensitivity
and resolution by a factor of 2 or more.

Introduction

The discrete Fourier transform (DFT) played an enabling role
in the development of modern nuclear magnetic resonance
(NMR) spectroscopy.1 Despite the importance of the DFT for
spectrum analysis in NMR, its limitations are well known,2 and
a variety of modern methods of spectrum analysis have been
developed (for reviews, see refs 3-7) that provide better results
than the DFT. These methods are particularly attractive for
multidimensional experiments, where the data acquisition time
is directly proportional to the number of data samples in the
indirect dimensions. Since they achieve higher resolution from
shorter data records, they can also yield higher sensitivity by
using the time savings to perform additional signal averaging.
As the cost of state-of-the-art NMR spectrometers continues to
soar, and the demand for higher sensitivity in biomolecular
NMR experiments from structural genomics initiatives8 and

high-throughput screening of drug candidates9 increases, the
incentive to exploit these methods to reduce data acquisition
times and improve spectral quality becomes more significant.

The most widely used method of modern spectrum analysis
used for processing NMR data is to extrapolate the measured
signal using linear prediction (LP) prior to discrete Fourier
transformation. Considerable effort has been devoted to char-
acterizing the precision and accuracy of spectrum analysis based
on parametricLP spectrum analysis,10-12 in which LP is used
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to construct a model of the signal, rather than to extrapolate
the data. To our knowledge, however, no comparable analysis
has been conducted for spectra obtained by LP extrapolation.
This curious state of affairs persists, despite the fact that LP
extrapolation is used far more routinely in the analysis of
multidimensional NMR data than is parametric LP.

In this paper we present the first quantitative assessment of
the accuracy of NMR spectra computed using LP extrapolation.
We compare the results with those obtained using maximum-
entropy (MaxEnt) reconstruction, another modern, though less
widely used method of spectrum analysis. The methods are
compared by testing the accuracy and precision of spectra
computed from synthetic data with known characteristics, using
data records of varying size. Repeated realizations of pseudo-
random noise were added to the synthetic data; in all, we
analyzed 5940 spectra. The criteria used to measure spectral
quality include signal-to-noise ratio (S/N), line width, the
number of peaks detected above a noise-determined threshold,
the number of false peaks, the precision of peak amplitudes,
the accuracy of peak frequencies, and the ability to resolve
closely spaced peaks. In almost every instance, MaxEnt
reconstruction provides more accurate spectra, higher sensitivity
and resolution, and fewer false-positive peaks than LP extrapo-
lation. Our results show that the use of MaxEnt reconstruction
instead of LP extrapolation can substantially increase the
performance of multidimensional NMR experiments.

LP extrapolation is based on the principle that future values
of certain types of signals can be expressed as linear combina-
tions of past data values.3,6,7The LP coefficients are determined
from the measured free induction decay (FID) and then used to
extrapolate the FID beyond the measured time interval. The
spectrum is computed by apodization and discrete Fourier
transformation of the augmented data (consisting of measured
and extrapolated values).13-17 LP is equivalent to modeling the
data as a sum of exponentially decaying sinusoids and is exact,
provided that the signal conforms to this model and the number
of LP coefficients is at least as large as the number of sinusoids.2

Real data include noise, however, and in practice this can lead
to difficulties. For LP to detect signal components reliably, even
when noise is present, requires that the number of coefficients
be rather larger than the number of sinusoids; this inevitably
results in the propagation of nonsignal components in the data.
Also, for the extrapolation to be numerically stable, there must
not be signal components with negative decay rates, i.e.,
exponentially growing sinusoids. The presence of noise can
result in LP coefficients corresponding to growing sinusoids,
and using them to extrapolate the signal will result in numerical
overflow, artifacts, or both. Growing components correspond
to roots of the characteristic polynomial (a polynomial with
coefficients given by the LP coefficients) lying outside the unit
circle in the complex plane.18 These roots are often displaced
to the unit circle (corresponding to a nondecaying signal) or
reflected inside the unit circle (corresponding to a decaying
signal), and the LP coefficients are recomputed from the

modified roots; this practice has no formal justification beyond
ensuring stable, albeit incorrect, extrapolation.

Potential hazards of using LP extrapolation to augment
experimental data have been noted previously. As pointed out
by Tang and Norris,17 noise present in the experimentally
determined part of the FID is retained, and the lastL points of
the FID (whereL is the number of LP coefficients), which have
the lowest S/N, are used to start the LP extrapolation. They
argued that the gains realized by LP extrapolation of the
experimental FID amount to little more than reduction of
truncation artifacts. A similar prediction was made by Stephen-
son,3 who also emphasized the distinction between observation
noise and prediction noise. He noted that at low S/N, the
assumptions inherent in applying the LP model are no longer
valid. These predictions were based mainly on consideration
of the algorithm, and they have some validity. In fact, however,
some gain in S/N does result from LP extrapolation of the FID,
because LP preferentially propagates components at the fre-
quencies corresponding to the zeros of the characteristic
polynomial. This can be seen by computing LP coefficients for
an FID and then using them to extrapolate a signal containing
only noise. The result is that peaks appear in the DFT spectrum
of LP-extrapolated noise at positions corresponding to the strong
components of the original signal used to compute the LP
coefficients. As we will show, gains in S/N for signal compo-
nents using LP extrapolation are often offset by selective
amplification of noise, resulting in false peaks.

In comparison to LP, MaxEnt reconstruction makes few
assumptions about the characteristics of the signal.19 Because
the peaks are not assumed to have any particular characteristics,
MaxEnt can be used for spectral analysis in solid-state NMR
and other applications that have non-Lorentzian peak shapes.
Instead of computing a spectrum directly from the data, MaxEnt
constructs trial spectra, computes the hypothetical time domain
signal that would give rise to that spectrum, and then compares
this with the actual data for consistency. The hypothetical data
are said to be consistent with the experimental data when the
level of disagreement (computed using aø2 statistic, for
example) is approximately equal to the noise level. From among
all the consistent trial spectra, MaxEnt selects the one with the
highest entropy. Advantages of this inverted approach to
spectrum analysis are that the experimental data can be sampled
at arbitrary times,20,21 small amounts of missing or corrupted
data can be tolerated,2 and arbitrary functions can be stably
deconvolved.22,23Disadvantages include the fact that nominally
Lorentzian peak shapes can be distorted and peak intensities
altered (although it is possible to compensate for this effect24).

The test data used in this study are synthetic two-dimensional
signals with characteristics typical of the indirect dimensions
of multinuclear experiments on proteins, i.e., corresponding to
a two-dimensional cross section of a three- (or higher) dimen-
sional experiment. We specifically examined the influence of
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the number and distribution of samples on spectral quality.
Spectra computed using conventional discrete Fourier analysis
or LP extrapolation are necessarily restricted to linearly spaced
time samples, so that only the total number of samples in each
dimension can be adjusted. MaxEnt reconstruction is free from
such constraints, however, and for this method we examined
the influence of nonlinear sampling schemes,20,21as well as the
total number of samples, on spectral quality. Far from being
consistently beneficial or even benign, our results indicate
circumstances where LP extrapolation actually degrades the
quality of spectra, compared to conventional discrete Fourier
analysis. In contrast, MaxEnt reconstruction preserves the
frequency accuracy and resistance to false-positive peaks of the
DFT but provides much higher resolution, especially when used
with nonlinear sampling. The results hold implications for the
design of experimental sampling schemes, for the choice of
signal-processing methods, and for automated analysis of
spectra.

The use of LP extrapolation in NMR warrants a brief
historical note. In a recent review by Koehl,7 the first application
of LP extrapolation in NMR was attributed to Tirendi and
Martin.14 An earlier example, however, was published by Ni
and Scheraga,13 and a nearly contemporaneous example was
published by Zeng et al.15 Closely related methods were
described by Tang and Norris,17 in which LP is used to
extrapolate a model FID fit to the experimental data, rather than
the experimental data itself. Proper attribution is made difficult
by the fact that many early applications used nomenclature very
different from that used today. Ni and Scheraga, for example,
referred to their technique as “maximum-entropy extrapolation”,
because of its similarity to the Burg maximum-entropy method.25

(The Burg method uses LP to extrapolate the autocorrelation
function, which on Fourier transformation yields the power
spectrum, rather than a complex spectrum. The differences
between the Burg method and MaxEnt reconstruction are
described in ref 2.)

Methods

Test Data Sets.A group of 10 master data sets was prepared, each
containing synthetic sinusoids plus noise in a two-dimensional array
mimicking the appearance of at1-t2 cross section from a three-
dimensional NMR experiment following Fourier transformation along
the acquisition dimension. Each master data set contained 78 complex
points in t1 and 50 complex points int2, for a total of 3900
hypercomplex points. The simulated spectral widths were 7600 Hz in
f1 and 3198 Hz inf2. Forty-nine sinusoids were included in each data
set (all in-phase): 25 with amplitudes ranging from 60 to 84 (by 1)
and 24 with amplitudes ranging from 105.5 to 600 (by 21.5). On
occasion, we will refer to the 25 lower-amplitude signals as the “weak
peaks”. The decay rates int1 andt2 corresponded to full widths at half-
maximum (fwhm) of 30 and 50 Hz, respectively. Frequencies were
assigned using a pseudo-random sequence with close overlaps filtered
out and avoiding the edges of the spectral window so as to prevent
wrap-around. Pseudo-random Gaussian noise having a root-mean-square
(RMS) amplitude of 300 was added to each data set. Different random
seeds were used for the frequencies and the noise in the various data
sets. A contour plot of the zero-filled DFT spectrum for one of the
data sets is shown in Figure 1.

A second group of 10 master data sets was also prepared, identical
to the first (i.e., having the same frequencies and the same noise) except

that the decay rate of the sinusoids in thet1 dimension was set to zero,
to simulate data from a constant-time experiment. Finally, a third group
of 10 data sets was prepared, identical to the first except that each
peak was replaced by a doublet split by 80 Hz inf1, to assess the ability
of the algorithms to resolve closely spaced peaks. Separate calculations
were carried out using the three master data collections.

Data Processing.Various subsets of each of the 30 master data
sets were used as input for the spectrum reconstruction computations.
The sizes of the final output spectra were all set to 256× 256 points.
Three types of spectra were computed: DFT alone (using zero-filling

(25) Burg, J. P. InModern Methods of Spectral Analysis; Childers, D. G., Ed.;
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Figure 1. Contour plot for the DFT spectrum of a master data set without
(A) and with (B) pseudo-random noise. The one-dimensional cross section
in (C) is along thef2 dimension at the position inf1 indicated by the arrow
and dashed line in (B).
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and with or without apodization), extension in each oft1 andt2 by LP
followed by DFT (with or without data mirroring and with or without
apodization), and MaxEnt reconstruction int1 and t2. Two types of
apodization were used. For sensitivity enhancement, the window
function consisted of an exponential decay corresponding to 30 Hz in
t1 and 15 Hz int2 for data sets with decaying signals; the exponential
decay was set to 50 Hz int1 for data sets containing constant-time
signals. For resolution enhancement, a 60°-shifted sinebell function was
applied.

The test data subsets, or sampling schemes, are illustrated in Figure
2. For each scheme, reconstructions were performed using 500, 700,
900, ..., 3900 input points. Because LP and the DFT are not capable of
handling nonlinearly sampled data, the linear sampling scheme used
with these techniques consisted simply of all 50 points int2 together
with various length initial segments of the full 78 points int1 (Figure
2A). Five sampling schemes were used with MaxEnt: linear sampling
in t1 (Figure 2A, the same as with LP and DFT), one-dimensional
exponential sampling int1 (Figure 2B), one-dimensional random
sampling from an exponential distribution int1 (not shown), random
sampling from a two-dimensional exponential distribution int1 andt2
(Figure 2C), and uniform random sampling in two dimensions (Figure
2D). Sample points for the 1D exponential scheme were selected as
described previously.21 The 1D random exponential sampling scheme
resembles the 1D exponential scheme in that the samples in each column
are distributed exponentially int1, but the random selection means that
different columns have different points sampled. Sample density decay
rates were set to 30 Hz int1 and 50 Hz int2.

Given input datad0, ..., dM-1 (whereM is the number of available
points), the LP method involves finding coefficientsa1, ...,aL (L is the
prediction filter order) that best satisfy the prediction equations:

Once determined, the prediction filter is used to extend the input data
by iteratively applying eq 1 withn set equal toM, M + 1, and so on.
Our LP calculations used the singular value decomposition (SVD)
method for determining the prediction coefficients.2 The prediction filter
order L was set to the maximum possible value in each dimension:
one-half the number of available data points. Data mirroring (i.e.,
extension of the input data to negative time values) was performed
according to Zhu and Bax.26 Unstable growth of the output data was
detected by checking whether the output points attained an absolute
value more than twice as large as that of the largest input point; when
this occurred, the prediction coefficients were altered by solving the
characteristic polynomial

and replacing roots larger than 1 in absolute value by their reflection
about the unit circle in the complex plane. (In some of the spectra, for
which only a small number of data points were used, this technique
failed to detect some slowly growing sinusoids.)

Maximum-entropy reconstructions used a fully two-dimensional
version24 of the modified “Cambridge” algorithm.27 The algorithm seeks
to find the spectrumf ) f0, ..., fN-1 (whereN is the output size) that
maximizes the “spin-1/2 entropy”,28,29

subject to the constraint that

Here, IDFT is the inverse discrete Fourier transformation, def is a scale
factor (set to 20), and aim is an estimate of the noise level in the data
(set to 200). No decay kernel was deconvolved. Note that since the
algorithm is two-dimensional, thej andk sums in eqs 3 and 5 range
over both indices of the data sets (f1, f2 and t1, t2, respectively). The
absolute values appearing in these equations are the square roots of
the sum of the squares of all four hypercomplex data components, which
accounts for the factor of 4 appearing in the denominator of eq 5. The
entropyS(f) of a spectrum is sometimes described as a measure of the
amount of “missing information”; by this interpretation, the spectrum
obtained by MaxEnt reconstruction is the one that has the least amount
of information still consistent with the experimental data.30 We take
the somewhat more pragmatic view that the entropy is a useful
regularizer that ensures smooth, stable reconstructions from noisy data.

Data Analysis. Peak maxima were identified by starting at the
spectral position corresponding to the frequencies of a synthesized peak
and conducting an uphill search, at each step comparing the current
value with the eight nearest neighboring values. If the search failed to
terminate after two steps, the peak was deemed undetectable. Peak
amplitudes, line widths, and frequencies were determined by least-
squares fitting a Lorentzian line to anf1 cross section through the center
of each peak. For peaks that were too small relative to the noise level,
the fitting procedure did not converge; such peaks were not included
in the statistical analyses. Reported signal heights are the average of
the peak heights over all the fitted peaks in each spectrum. The noise
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(29) Hoch, J. C.; Stern, A. S.; Donoho, D. L.; Johnstone, I. M.J. Magn. Reson.
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Figure 2. Typical sampling schedules for selecting subsets from a master
data set, illustrated using large and small dots to represent samples used
and not used, respectively. Linear sampling, used for all spectra employing
the DFT or LP, and for linearly sampled MaxEnt reconstructions, is
illustrated in (A). Here all points int2 from the master data set are used,
and the number of points used int1 is varied. The nonlinear sampling
schemes depicted employ exponential sampling int1 (B), exponential
sampling int1 and t2 (C), and random sampling int1 and t2 (D).
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level was computed as the RMS average value of the spectrum,
excluding a square window 13 points across centered at each peak.
False peaks were identified as all points not within any of the square
peak windows, larger than a cutoff value, and larger than any other
points within a 13× 13 region; the cutoff value was set to 5 times the
noise level. A “doublet splitting parameter”∆, measuring the depth of
the “valley” between components of a doublet, was calculated according
to the formula

whereA andB are the heights of the peaks comprising the doublet and
C is the height of the intervening valley. All of the analysis was carried
out separately for each spectrum, and the results were averaged over

the 10 master data sets in each group to produce the reported values.
Combined CPU timings for the spectral estimates and analyses are listed
in Appendix I.

Results and Discussion

S/N and Sensitivity.S/N values for the zero-filled DFT, LP-
extrapolated DFT, and MaxEnt spectra as functions of the
number of data samples are shown in Figure 3 (panels E and
F), along with separate plots for the RMS noise level and
average signal amplitude (panels A-D). The theoretical result
given by eq AII.3 (Appendix II) for the DFT spectrum of a
decaying sinusoid plus random noise is also plotted in panel E
of Figure 3. The S/N curves for the linear spectral estimates
(DFT with and without apodization) closely resemble the

Figure 3. Signal, noise, and S/N amplitudes for spectra computed from the non-constant-time data sets. The lower horizontal axis label gives the total
number of data points used in computing the spectrum; the upper label gives the corresponding number of points int1 for the linear sampling schemes (the
same convention is used in Figures 4 and 6). Except when nonlinear sampling was employed (MaxEnt), all 50 points int2 from the master data sets were
used. The thick curve in panel E shows the expected theoretical S/N (Appendix II) for a DFT spectrum.

∆ ) 1 - C
(A + B)/2

(6)
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theoretical curve, monotonically increasing with increasing
number of samples. As the sinusoids decay, eventually a point
is reached beyond which additional data samples contribute more
noise than signal, and the S/N begins to decrease. The predicted
point of diminishing returns for our data is at 101 points int1,
which is off scale in this plot. In contrast, S/N obtained using
LP extrapolation actually decreased with increasing number of
points. Panels A and C of Figure 3 show that this decrease
resulted from an increase in the average noise level that was
more rapid than the increase in the average signal level. The
reason for this odd behavior is very simple. Once there are
sufficiently many data points for LP to fit the signal peaks,
adding more data will help make the fits more accurate but will
not significantly affect the fitted intensities. The additional noise
will increase the overall noise level, however, thereby decreasing
the S/N value.

S/N in the MaxEnt spectra, on the other hand, exhibited a
rather marked increase with increasingM (Figure 3F) and
reached values that were substantially greater than those obtained
using the DFT, with or without LP extrapolation. The average
noise level in MaxEnt spectra was fairly insensitive toM (Figure
3D), and thus the increasing S/N resulted from increasing signal
intensity (Figure 3B). It is interesting that with exponential
sampling in both dimensions, the S/N was substantially higher
and reached a maximum whenM was around 2200 total points.
This apparently results because more samples are concentrated
at shorter aggregate timest1 + t2 for a given sample size than
when linear sampling is used int2. Note that since the various
nonlinear sampling schemes differ only in which sample points
out of the master data sets they utilize, there is no difference
among the MaxEnt reconstructions based on all 3900 input
points. Consequently, in panels B, D, and F of Figure 3 (and
also in later figures), the curves for the different sampling
schemes converge at the right-hand edge.

S/N alone is not a reliable indicator of the sensitivity of
nonlinear spectral estimates, such as LP extrapolation or MaxEnt
reconstruction.31 Sensitivity refers to the ability to distinguish
between signal and noise; it implies not just detection of weak
peaks, but also rejection of false or noise peaks. Panels A and
B of Figure 4 display the number of false peaks using threshold
peak detection for DFT-based spectra (with and without LP
extrapolation) and for MaxEnt spectra, respectively. Exponential
apodization and mirror-image extrapolation both resulted in
dramatic reduction of the number of false peaks using LP, but
for short samples LP extrapolation of any description resulted
in more false peaks than using DFT alone. MaxEnt reconstruc-
tion, in contrast, was resistant to false peaks for all sample sizes
when using linear, 2D exponential, or random sampling. For
short samples, 1D exponential sampling yielded false peaks in
numbers comparable to those obtained with LP extrapolation
with exponential apodization. We believe that these false peaks
to a great extent arise from the coherence (inf2) of artifacts
resulting from nonlinear sampling. When nonlinear sampling
is applied in both dimensions, or when a degree of randomness
is superimposed upon the nonlinear sampling int1 (the 1D
random exponential sampling), this coherence disappears, and
the number of false peaks diminishes.

The plots in Figure 4C,D, showing the fraction of the weak
peaks detected using the different spectral estimates, loosely
resemble the curves for S/N, but there are differences. LP
extrapolation resulted in a dramatic increase in the fraction of
weak peaks detected, as well as a shift in the optimal sample
size for detection of weak peaks to shorter samples. In contrast
to their rejection of false peaks, apodization and mirror-image
extrapolation had almost no impact on the detection of weak
peaks. Detection of weak peaks using MaxEnt reconstruction
increased nearly monotonically with increasing sample size, and
2D exponential sampling performed better than other sampling
schemes. Overall, the highest scores for weak-peak detection
using MaxEnt are comparable to those obtained using LP,
although the best LP results occurred in a regime where there
were significantly more false peaks than there were using
MaxEnt.

Data from experiments that incorporate a constant-time
evolution period do not decay in the corresponding time
dimensions. In principle, the sensitivity for constant-time
domains should not show a point of diminishing returns with
additional samples. Using LP extrapolation, it should instead
reach a plateau corresponding to convergence of the LP
coefficients to the true values corresponding to the signal
components. The plots for our reconstructions using the
constant-time data sets do have a plateau in the average peak
intensity starting around 45 sample points (not shown). The
noise level does not plateau, but the slope diminishes near 50
samples. The net result is that S/N reaches a plateau fairly early,
around 20 samples. The peak intensity and noise level for zero-
filled DFT spectra do not plateau, since each additional sample
contributes the same amount of signal and noise.

The number of false peaks detected when one of the time
domains was constant time did not significantly differ from that
obtained for non-constant-time data, whether using LP or
MaxEnt (not shown). LP extrapolation invariably generated
more false peaks than the DFT alone or MaxEnt reconstruction,
except when nonlinear sampling was used only in one time
domain. The trend observed for the fraction of weak peaks
detected is qualitatively different, however. Using LP extrapola-
tion, instead of reaching a point of diminishing returns, the
number of peaks detected increased monotonically (Figure 4E).
The qualitative trend for MaxEnt reconstruction is unchanged,
but the fraction of weak peaks was larger for all sample sizes
(Figure 4F). For constant-time data, the number of weak peaks
detected was roughly comparable for LP extrapolation and
MaxEnt reconstruction.

The distinctly different trends observed in threshold peak
detection using LP extrapolation and MaxEnt reconstruction
suggest that optimal experimental design for discriminating
between signal and noise will depend on the technique used
for spectrum analysis. With LP extrapolation, the optimal sample
size for detecting weak peaks was around 30 samples int1, but
LP extrapolation was also prone to generating false peaks for
such short samples. The optimal sample size for discriminating
signal peaks from noise is thus difficult to determine a priori
and involves finding a tradeoff among peak detection, false peak
rejection, and data acquisition time. Deciding the optimal sample
size when using MaxEnt reconstruction is more straightforward.
The optimal sensitivity to weak peaks occurred with large
samples (near 70 samples int1), where MaxEnt was also highly

(31) Donoho, D. L.; Johnstone, I. M.; Stern, A. S.; Hoch, J. C.Proc. Natl. Acad.
Sci. U.S.A.1990, 87, 5066-5068.
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resistant to false peaks. The tradeoff using MaxEnt is thus
mainly between sensitivity and acquisition time.

The empirical sensitivity trends we observe are consistent
with the algorithmic properties of the spectral estimates. LP
extrapolation implicitly models the signal (containing both
sinusoidal nuclear resonances and noise) as a sum of exponen-
tially damped sinusoids. To help prevent the noise from biasing
the spectral parameters (frequency, decay rate, and so on) of
the sinusoids, the prediction orderL is chosen to be larger than
the expected number of resonances. SinceL is equal to the
number of sinusoids in the model, the extra sinusoids end up
being fitted to the strongest noise components. The resulting
LP coefficients propagate signal components with frequencies

corresponding to the model, whether they are resonances or
noise. Thus, the tendency of LP extrapolation to generate false
peaks is attributable to the underlying model. Similarly, the
resistance of MaxEnt reconstruction to false positives, even in
regimes where it is maximally sensitive to signal components,
can be understood from its mathematical foundation. In the limit
whereN (the number of frequencies in the spectral estimate) is
equal toM (the number of time samples), it has been shown
that MaxEnt reconstruction is numerically equivalent to a
nonlinear transformation applied to the DFT spectrum.31 This
nonlinear transformation scales down the amplitude of the
spectrum at all frequencies, with small-amplitude peaks scaled
down more than large-amplitude peaks. Such a transformation

Figure 4. Results of threshold peak detection, indicating the number of false peaks detected (panels A and B) and the fraction of weak peaks detected for
spectra from the non-constant-time data sets (panels C and D) and from the constant-time data sets (panels E and F).
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can only reduce the number of peaks above an RMS-noise-
determined threshold. For the general case in which the number
of points in the reconstructed spectrum is larger than the number
of data samples, this relationship does not strictly hold, but the
limiting behavior helps us to understand the resistance of
MaxEnt reconstruction to false peaks.

The situation changes when MaxEnt is used to compute
spectra for nonlinearly sampled data. The task here can
approximately be described as deconvolving the spectrum of a
sampling function (equal to 1 for every sampled time point and
0 for points not sampled) from the spectrum that would be
obtained if the data were linearly sampled.32 The presence of
noise prevents perfect deconvolution, and the result is weak
satellites around peaks at positions determined by the Fourier
transform of the sampling function. When the dynamic range
of the data is high, that is, when there are signal components
spanning a wide range of amplitudes, these artifactual satellites
can be confused with weak peaks.

When nonlinear sampling is used in only one dimension, and
the same sampling schedule is used for all data columns, the
sampling artifacts can align around peaks, creating extended
artifacts. One way to minimize this effect is to use different
sampling schedules for different columns of the data matrix,
by introducing a degree of randomness that preserves the overall
character of the schedule. This is one example of the more
general phenomenon, that nonlinear sampling applied to one
domain can have unexpected manifestations in other dimensions.
Another example of this effect appears in Figure 3F (see above).

Amplitude Precision. False peaks and missing weak peaks
result from the inability to distinguish signals from noise. For
signal peaks thatare detected, noise influences the accuracy of
the amplitudes in the spectral estimate. In general, errors in the
signal amplitudes can appear both as systematic bias and as
random fluctuations that place a limit on the precision of any
amplitude estimate. We previously showed thatin situ calibra-
tion of MaxEnt spectra can remove the systematic bias, yielding
intensities with accuracy comparable to that of DFT spectra in
the context of relaxation and quantitative “J” experiments.24 Here
we examine the relative precision of amplitudes derived from
different spectral estimates.

The relative precision (computed as the ratio of the RMS
deviation of the amplitude divided by the average amplitude
over the 10 master data sets) for spectra obtained using 54
sample points int1 is shown in Figure 5, plotted as a function
of the input peak amplitude. For peaks detected in fewer than
two spectra, the relative precision was assigned the value 0.
For clarity, the weak peaks are represented by only two data
points, computed as averages of the 13 smallest and 12 largest
weak peaks, respectively.With the exception of unapodized LP
extrapolation, the results using LP extrapolation (panel A of
Figure 5) or MaxEnt reconstruction (panel B) were comparable.
Both yielded more precise amplitudes for larger signal ampli-
tudes, and both were less precise than Fourier transformation
alone.

Line Widths, Resolution, and Frequency Accuracy.Al-
though narrower line widths do not necessarily mean improved
resolution, we will begin our characterization of LP’s and
MaxEnt’s resolution by examining the line widths in the

reconstructed spectra. Panels A and B in Figure 6 show the
average measured widths, in thef1 dimension, of all the peaks
in the test spectra. (Although the digital resolution of the spectra
is 29.7 Hz, the precision of the measured line widths is much
better, because the analysis program used a nonlinear least-
squares fitting procedure to estimate the peak parameters.) The
decay rate of the signals in the test data corresponded to a line
width of 30 Hz (fwhm); this value is accurately reflected by
the reconstructions that used LP without any apodization,
provided sufficient input points were used. As one would expect,
the DFT-based reconstructions that did use exponential apodiza-
tion yielded larger line widths.

The parametric model underlying LP shows up plainly in
Figure 6A: once sufficient input data were present for the linear-
prediction coefficients to match the actual signal components,
the spectral estimates converged to fixed values for the line
widths, and adding more data made essentially no difference.
In contrast, the non-LP DFT spectral estimates resulted in peaks
that became narrower as more input points were added. Reading
down the right-hand side of the panel, one can distinguish two
classes of spectral estimates: those that used exponential
apodization and those that did not. Within each class, the LP
method produced narrower lines than the non-LP method did.

With the exception of the linear schedule, the MaxEnt line
widths shown in panel B are comparable to or better than the
LP line widths in each case, and they are also rather insensitive
to the number of input points. This is understandable, since the
nonlinear sampling schemes all involve acquiring data for long
t1 delay times, even when the total number of points acquired
is low. The information provided by these points constrained
the reconstructions to match the actual decay rate much more
closely than the reconstructions using linearly sampled data. In
fact, the linear schedule produced results very similar to those
of the plain DFT. (Note that the MaxEnt reconstruction did not
deconvolve a decay from the signal.)

Just as important as the sharpness of the peaks, but often
overlooked, is the accuracy of the peak frequencies. While
frequency error is not usually considered an aspect of resolution,
it is crucial for identifying connected peaks in multidimensional
spectra. Frequency errors increase the ambiguity of correlations
(peaks with a frequency in common) and thus increase the
likelihood that correlations will be made in error or missed.
Thef1 frequency errors of the reconstructed peaks are displayed
in Figure 6C,D. Notice that all the LP reconstructions except
for LP-mirror had larger errors than the DFT, although with
more input data the errors became smaller. Interestingly, the
unapodized and the sinebell-apodized LP reconstructionsswhich
yielded the narrowest peaksshad the largest errors. Again with
the exception of the linear sampling schedule, MaxEnt produced
frequency errors that were considerably smaller than LP did
for small data sets. For large data sets there was no significant
difference in the extent of the errors. Just as in the line width
analysis, MaxEnt with linear sampling gave results essentially
the same as the DFT. The frequency error, shown in Figure
5C,D as a function of signal amplitude for spectra computed
from 54 data samples int1, is smaller for more intense signals
in each of the spectral estimates. Although the variation is large,
the trend toward lower error is apparent and mirrors that
observed for the amplitude precision (panels A and B of Figure
5). This trend is one tangible aspect of the connection between

(32) Schmieder, P.; Stern, A. S.; Wagner, G.; Hoch, J.J. Biomol. NMR1994,
4, 483-490.
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sensitivity and resolution, and it shows that for high S/N, the
deficiencies of LP extrapolation become less important.

A third way to characterize the resolution of a spectrum is to
see how well it permits one to distinguish two closely spaced
peaks. We defined a “splitting parameter”∆ (explained in the
Methods section) in order to describe this property numerically.
Plotted in Figure 6E,F are the average∆ values for the peaks
in the spectra of our third test group, in which each peak was
replaced with a doublet split inf1. (The odd bump on the left
side of the curve for unapodized LP is a result of the analysis
program being confused by uncorrected exponentially growing
sinusoids, as mentioned earlier.) The LP methods are clearly
better at resolving doublets than are the DFT methods, but their
resolving power drops quickly as the amount of input data is
reduced; LP-mirror was the best behaved in this regard. The
mirroring of the input data is undoubtedly the source of its
advantage; it can make use of a data set that is effectively twice
as long to improve the resolution. However, it lagged behind
sinebell and unapodized LP when large amounts of data were
available, because it employed exponential apodization. Had
we used LP+ mirror + sinebell, the results would probably
have been close to the unapodized LP curve. The nonlinearly
sampled MaxEnt reconstructions performed much better. In

particular, 2D exponential sampling, 1D exponential sampling,
and random sampling show only modest declines in their ability
to separate closely spaced peaks even for the shortest data
records. Linearly sampled MaxEnt gave results roughly com-
parable to those of DFT, performing slightly worse than LP for
short data sets. Thus, the gains in resolution afforded by MaxEnt
reconstruction arise mainly from the ability to use nonlinear
sampling, and not MaxEnt in itself.

The influence of sample size on resolution for the constant-
time data was virtually identical to that observed for the non-
constant-time data (not shown).

Application to Experimental Data. Synthetic data sets
provide an unambiguous standard for assessing the accuracy
of spectral estimates, but they have limitations. Because
synthetic data contain signal components that are rigorously
sinusoidal and noise that is randomly distributed, the perfor-
mance measured using synthetic data may overestimate the
accuracy in the presence of nonrandom noise or signal com-
ponents that are not perfect sinusoids. Since these assumptions
are intrinsic to the method, it might be expected that spectra
obtained using LP extrapolation, in particular, will not approach
the accuracy reported for synthetic spectra. Although we cannot
know a priori the exact characteristics of signal components in

Figure 5. Relative precision (σ/average) of the amplitude estimates (panels A and B) and average frequency error inf1 (panels C an D) as a function of the
input signal amplitude, for spectral estimates computed using 54 data samples int1, or 2700 points total for the nonlinear sampling schemes.

A R T I C L E S Stern et al.

1990 J. AM. CHEM. SOC. 9 VOL. 124, NO. 9, 2002



real data, we can use the fact that longer data records tend to
provide more accurate frequencies to compare the relative
performance of spectral estimates. Results for LP extrapolation
and MaxEnt reconstruction of 40-, 64-, and 128-point data
lengths in the15N (t1) dimension of heteronuclear single quantum
coherence (HSQC) data for the 23 kDa protein prolactin are
compared with values derived from the DFT spectrum of 512-
point (in t1) data in Table 1 and Figure 7. The LP extrapolations
were computed using the largest possible number of LP
coefficients: 20, 32, and 64 for the 40-, 64-, and 128-point data
sets, respectively. Using fewer LP coefficients tends to increase
the frequency accuracy and decrease the number of the false-
positive peaks, at the expense of detecting fewer real peaks (data

not shown). The peaks listed in Table 1 lie in the spectral
window corresponding to amide N-H resonances; a portion of
this window is shown in the contour plots in Figure 7.
Comparison of the contour plots of spectra computed using LP
extrapolation (panel B) and MaxEnt reconstruction (panel C)
dramatically reinforces the superiority of MaxEnt reconstruction
that was apparent from the analysis of synthetic data. With the
exception of the spectra computed using 128 points, for which
LP extrapolation and MaxEnt reconstruction yielded comparable
frequency errors inf1, MaxEnt reconstruction performed far
better than LP extrapolation in terms of total number of peaks
detected above the noise threshold, the number of false peaks,
and frequency error.

Figure 6. Measures of resolution as a function of sample size. Line widths inf1 (panels A and B), average frequency error (panels C and D) for the
non-constant-time data sets, and values of the “splitting parameter”∆ (as defined in the text, panels E and F) for the doublet non-constant-time data sets.
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Concluding Remarks

The most important conclusions from this study are that LP
extrapolation of FIDs can degrade the quality of the spectra
and MaxEnt reconstruction performs better. The diminished
accuracy of peak positions and false peaks that can result are
particularly insidious defects, because they are not readily
apparent on casual inspection, yet they can seriously compromise
automated analysis. The dramatic reduction in truncation
artifacts with LP extrapolation and the apparent increase in S/N
(for intense peaks) that led to its widespread adoption in NMR
do not correspond to improved accuracy of peak frequencies
or improved sensitivity. In most respects, MaxEnt reconstruction
is superior to LP extrapolation for improving the resolution of
spectra from short data records. In particular, the ability of
MaxEnt to accommodate nonlinearly sampled data can provide
significant improvements in both sensitivity and resolution for
short data sets, compared to linear sampling.

The reduction in the number of false peaks, and the improved
amplitude precision and resolution that mirror-image extrapola-
tion provides, indicate that many of the difficulties associated
with LP extrapolation are due to numerical instability, rather
than deficits in the LP model. Mirror-image extrapolation
imposes a phase assumption, however, in addition to those
inherent in the LP model. We have observed examples where
the presence of even a single signal component that does not
have the proper phase introduces significant frequency errors
for other components of the spectrum, not just the component
with the wrong phase. While these sorts of errors are beyond
the scope of the present investigation, it is worth emphasizing
that improvements of mirror-image over simple LP extrapolation

for synthetic data do not necessarily imply robustness in the
face of nonideal signals and noise that are characteristic of
experimental data.

Our results also help to explain why the deficiencies of LP
extrapolation are not reflected in the literature. LP extrapolation
performs well when the S/N is high and data records are
sufficiently long. Spectroscopists tend to collect data until the
quality of the spectra are sufficient for their needs, regardless
of the method used for spectrum analysis. Using LP extrapola-
tion, however, requires that more time must be devoted to data
collection in order to achieve sufficient spectral quality than
would be necessary using MaxEnt reconstruction. For this reason
we believe that the most significant benefit that will accrue from
the use of MaxEnt reconstruction is reduction in the amount of
time devoted to data acquisition, rather than an increase in
resolution or sensitivity per se.

A lesson reinforced by this investigation is that the nonlin-
earity of modern methods of spectrum analysis demands special
attention when addressing the question of spectral quality. Most
importantly, the S/N ratio does not serve as a reliable indicator
of sensitivity. While nonlinearity is the source of much of the
power of modern spectral estimates, it places a burden on the
spectroscopist to empirically evaluate the performance of a
chosen method for the particular data being analyzed.In situ
analysis, based on adding synthetic signals with known char-
acteristics to the data prior to computing the spectrum, is a
straightforward approach that is applicable to any method of
spectrum estimation.22,24

The potential offered by MaxEnt reconstruction for higher
resolution, better sensitivity, and more efficient use of valuable

Table 1. Peak Counts and Frequency Fidelity for LP Extrapolation and MaxEnt Reconstruction of Truncated HSQC Data for Human
Prolactin.

Points

512 128 64 40

DFT LP MaxEnt LP MaxEnt LP MaxEnt

assigned peaks detected 182 158 174 111 170 80 169
peaks above a noise-determined threshold 182 158 174 108 170 59 167
false or unassigned peaks 16 485 23 172 18 101 17
avg frequency error (Hz) 0.00 1.35 1.40 2.30 1.49 2.38 1.65

Figure 7. Contour plots for a part of the N-H region of the15N-1H HSQC spectrum of human prolactin, utilizing (A) 512 data samples int1 and discrete
Fourier transformation, (B) 64 points int1 with LP extrapolation to 512, 60°-shifted sinebell apodization, and discrete Fourier transformation, and (C)
MaxEnt reconstruction using 64 samples int1, with exponential nonlinear sampling.
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spectrometer time, not only for high-throughput applications of
NMR such as structural proteomics8 and drug candidate
screening,9 but for any endeavor employing multidimensional
NMR, is substantial. When resolution in indirect dimensions is
a determining factor, the use of MaxEnt reconstruction and
nonlinear sampling can routinely reduce data collection time
by a factor of 2, and often more. The failure to utilize state-
of-the-art methods of spectrum analysis to process NMR data
is not only an extravagant waste, but also a needless impediment
to research.

Acknowledgment. This work was supported by the Rowland
Institute for Science and by grants from the National Institutes
of Health (GM 47467, G. Wagner, P.I.) and the National Science
Foundation (MCB 9527181, G. Wagner, P.I.). We are grateful
to Gerhard Wagner (Harvard Medical School) for his continuing
interest and support. We thank Sandrina Kinet and Joseph
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Appendix I. CPU Times for the Spectral Estimates

Representative CPU times for computing a single two-
dimensional spectrum and performing the peak analysis are
given in Table 2. The times were measured using an SGI O2
computer, with a 174 MHz R10000 (IP32) central processing
unit and 256 megabytes of random access memory. Note that
the MaxEnt reconstructions exhibited a wide range of execution

times (reflecting differing rates of convergence); in each class,
the random sampling schedule used the least amount of CPU
time and the 2D exponential used the most.

Appendix II. Analytical Derivation of S/N for a Decaying
Sinusoid

For a signal containing a single exponentially decaying
component with frequency equal to 0, the time domain signal
measured at a timen∆t can be represented as

whereA is the amplitude andL is the line width (1/πL is the
decay time for the signal envelope). The 0 Hz value (i.e., the
peak value) of the Fourier transform of anM-point time domain
signal zero-filled toN points is

where z ) e-πL∆t. If the RMS noise amplitude in the time
domain data isσ, Parseval’s theorem (2) implies that the noise
level in the DFT spectrum isσ(M/N)1/2. The S/N is then

demonstrating the dependence on the number of samples and
the line width. The partial derivative with respect toM is

The value ofM for which this expression is 0,Mmax, is both
the number of points for which S/N is maximum and also the
point of diminishing returns, because exceeding this value leads
to degradation of S/N. ForL ) 30 Hz and∆t ) (1/7600) s,
Mmax is 101.

JA011669O

Table 2. CPU Time (Minutes:Seconds) for Computing the
Spectral Estimates and Peak Analyses

500
(10)a

1500
(30)

2500
(50)

3500
(70)

3900
(78)

DFT 0:02 0:02 0:02 0:02 0:02
LP 0:24 0:31 0:56 2:32 4:45
LP mirror 0:33 0:44 1:19 3:21 5:49
MaxEnt/random 4:27 6:32 9:05 11:14 12:02
MaxEnt/2D exponential 5:34 9:52 11:29 11:57 12:02

a The first number indicates the total number of input points; the number
in parentheses is the number of points int1 (for DFT and LP calculations
only).

dn ) A e-πLn∆t (AII.1)
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